

ULTRAVIOLETTE AUTOMOTIVE PRIVATE LIMITED

PROJECT DELIVERY REPORT PO -UV/PO/05757

For Enquiry keerthan.hk@emuski.com

Contact: +918660911980 | Website: www.emuski.com

EMUSKI

DELIVERY REPORT

TABLE OF CONTENT

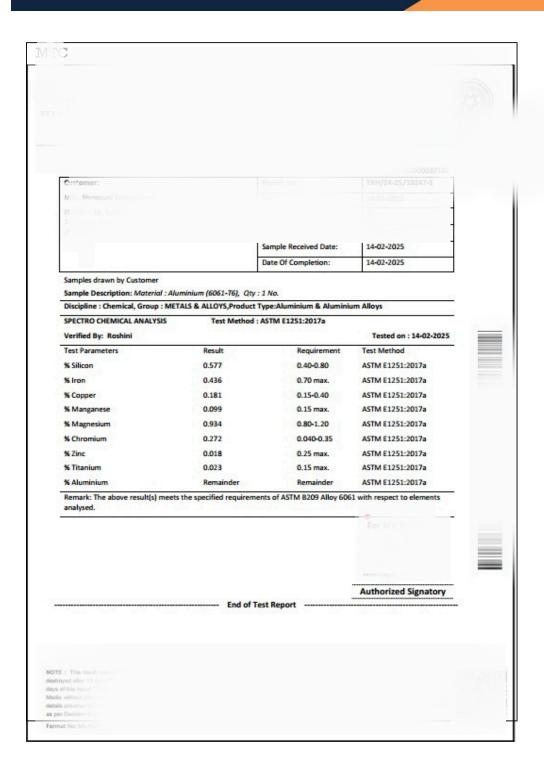
CHAPTER NO	TITLE			
	Project Details			
1 0 1	Part details- VQ240210_0.B	4		
	Manufacturing Process Plan	4		
	Raw Material Inspection Report	5		
2.3	2D Drawing	6		
	Final Inspection Report	7		
2.4	Dock Audit Check List	8		
2.5	Product Images	9		
3	Key Learnings	9		

EMUSKI

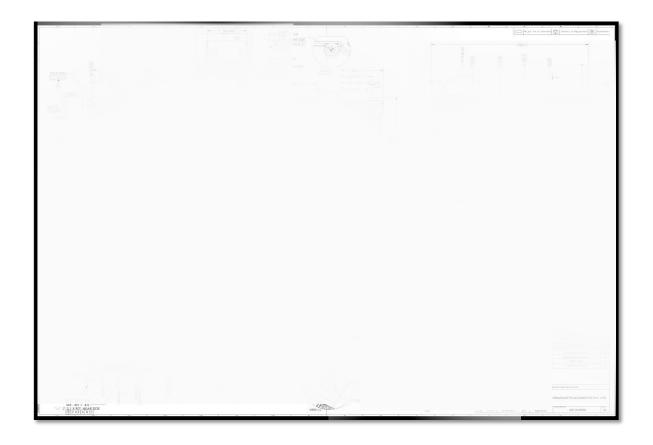
DELIVERY REPORT

S.no	Description	Value
1	Customer Name	
2	Address	
3	Buyer Name	
4	Email id	
5	Contact Number	
6	Order type	
7	Purchase Order Number & Date	
8	No of Line item/ Part	
9	PO Delivery Date	
10	Project Scope	
11	Incoterms	
12	Packing Type	
13	Tax invoice number & Date	
14	Actual Delivery date	

2 Part details- VQ240210_0.B


	Part details	3D Image
Line Item -No	1	
Item number		25.5
Drawing number	VO	
Part Description		
Revision number		II COMPANY
Material Grade	AL-600110	ISOMETIC VIEW

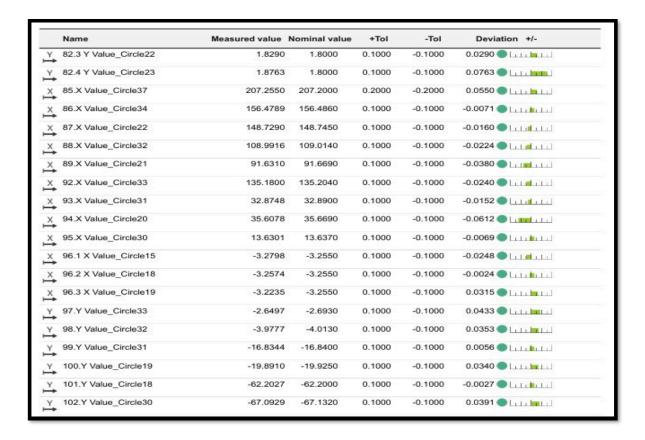
2.1 MANUFACTURING PROCESS PLAN


Op No	Process NameS	ymbolSp	ecification	Equipment Selection	Control Mechanism/ Inspection type/Remarks
10	Raw Material inward Inspection		AL- 6061 T6	-	Third party inspection
20	Band Saw Cutting		150 x 225 x 70	Cutting Machinel	Measuring Tape Inspection
30	Machining Operation		As per 2D Drawing	VMC Machine	Vernier Calliper, Height Gauge
40	Inspection		As per Balloon Drawing	Manual	Vernier Calliper, Height Gauge
50	Packing		As per Agreed Packing method		Corrugated box
60	Delivery		As per Inco terms	Road Transport I	Door Step Delivery

2.2RAW MATERIAL INSPCTION REPORT

Inspection Details						
Material Grade	AL- 6061 T6					
Inspection type -	Chemical anaylsis					
Tested at –	Micro Lab					
Report Number -	TRH/24/10247-1					
Inspected Date -	14-02-2025					

2.32D DRAWING



2.4FINAL INSPECTION REPORT

Part /item Number:	VQ240210_0.B	Company Name	EMuski
Part Name	OBC Housing	Address	
Revision Number	F	Inspection Date	13-02-2025

	Name	Measured value	Nominal value	+Tol	-Tol	Deviation +/-
	7.Y Value_Circle4	-84.2252	-84.2380	0.1000	-0.1000	0.0128
	8.Y Value_Circle3	-102.4538	-102.4690	0.1000	-0.1000	0.0152
	12.X Value_Intersection2	14.0392	14.0400	0.1000	-0.1000	-0.0008
	14.1 X Value_Circle4	61.1491	61.2000	0.1000	-0.1000	-0.0509
	14.2 X Value_Circle3	61.1323	61.2000	0.1000	-0.1000	-0.0677
	16.X Value_Circle8	180.1301	180.1500	0.1000	-0.1000	-0.0199
	18.Y Value_Circle8	-73.3733	-73.3500	0.1000	-0.1000	-0.0233
	20.Y Value_Circle9	-48.2249	-48.2100	0.1000	-0.1000	-0.0149
	22.Y Value_Circle5	-38.5539	-38.5600	0.1000	-0.1000	0.0061
	23.Y Value_Circle6	-15.5725	-15.5700	0.1000	-0.1000	-0.0025
	24.Y Value_Circle7	-9.8221	-9.8300	0.1000	-0.1000	0.0079
	27.X Value_Circle9	180.5126	180.5000	0.1000	-0.1000	0.0126
	30.X Value_Circle7	122.2101	122.2000	0.1000	-0.1000	0.0101
	32.X Value_Circle5	91.1967	91.2000	0.1000	-0.1000	-0.0033
	33.X Value_Circle6	90.6946	90.7000	0.1000	-0.1000	-0.0054
	38.X Value_Intersection1	12.9397	12.8600	0.1000	-0.1000	0.0797
5	39.Diameter_Cylinder1	15.9787	16.0000	0.1000	-0.1000	-0.0213
-	43.Z Value_Symmetry1	-6.5874	-6.5000	0.1000	-0.1000	-0.0874
	44.C Distance1_X	44.8423	44.8000	0.1000	-0.1000	0.0423
۰	45.C Distance1_X	54.6217	54.6000	0.1000	-0.1000	0.0217
0 1	46.C Distance1_X	6.9733	7.0000	0.1000	-0.1000	-0.0267
)	47.1 Radius1	1.5104	1.5000	0.1000	-0.1000	0.0104
)	47.2 Radius2	1.4850	1.5000	0.1000	-0.1000	-0.0150
	56.X Value_Circle10	170.7365	170.7400	0.1000	-0.1000	-0.0035

Name	Measured value	Nominal value	+ToI	-Tol	Deviation +/-
59.Z Value_Point2	-41.0937	-41.1000	0.1000	-0.1000	0.0063
60.Z Value_Point1	-37.6066	-37.6000	0.1000	-0.1000	-0.0066
61.Flatness1	0.0069	0.0000	0.2000	0.0000	0.0069 🔵 👢
62.Z Value_Plane7	-43.5897	-43.6000	0.1000	-0.1000	0.0103
65.Y Value_Circle11	-67.3306	-67.3855	0.1000	-0.1000	0.0549
66.Y Value_Circle15	-104.3647	-104.3730	0.1000	-0.1000	0.0083
67.Y Value_Circle1	-126.3906	-126.4000	0.1000	-0.1000	0.0094
68.X Value_Circle29	36.5584	36.5880	0.1000	-0.1000	-0.0296
69.X Value_Circle28	74.3613	74.4030	0.1000	-0.1000	-0.0417
70.X Value_Circle11	88.9014	88.9480	0.1000	-0.1000	-0.0466
71.X Value_Circle27	134.3930	134.4040	0.1000	-0.1000	-0.0110
72.X Value_Circle36	146.3159	146.3520	0.1000	-0.1000	-0.0361
73.X Value_Circle35	198.6283	198.6500	0.1000	-0.1000	-0.0217
74.1 X Value_Circle23	204.7145	204.7450	0.1000	-0.1000	-0.0305
74.2 X Value_Circle24	204.7362	204.7450	0.1000	-0.1000	-0.0088
74.3 X Value_Circle25	204.7384	204.7450	0.1000	-0.1000	-0.0066 O LILI
74.4 X Value_Circle26	204.7333	204.7450	0.1000	-0.1000	-0.0117
75.1 Y Value_Circle26	-125.1038	-125.2000	0.1000	-0.1000	0.0962
75.2 Y Value_Circle27	-125.1154	-125.2000	0.1000	-0.1000	0.0846
75.3 Y Value_Circle28	-125.1555	-125.2000	0.1000	-0.1000	0.0445
75.4 Y Value_Circle29	-125.1818	-125.2000	0.1000	-0.1000	0.0182
76.Y Value_Circle36	-118.7479	-118.7950	0.1000	-0.1000	0.0471
77.Y Value_Circle35	-112.3060	-112.3690	0.1000	-0.1000	0.0630
78.Y Value_Circle25	-82.9528	-82.9990	0.1000	-0.1000	0.0462
79.Y Value_Circle37	-63.1409	-63.2000	0.2000	-0.2000	0.0591
80.Y Value_Circle24	-43.3421	-43.3990	0.1000	-0.1000	0.0569
81.Y Value_Circle34	-8.8225	-8.8640	0.1000	-0.1000	0.0415
82.1 Y Value_Circle20	1.7971	1.8000	0.1000	-0.1000	-0.0029 O LILI
82.2 Y Value Circle21	1.8321	1.8000	0.1000	-0.1000	0.0321

Name	Measured value	Nominal value	+Tol	-Tol	Deviation +/-
Y 48.Y Value_Circle7	-96.9674	-97.0000	0.1500	-0.1500	0.0326
Y 49.1 Y Value_Circle4	-61.7105	-61.7000	0.1500	-0.1500	-0.0105
Y 49.2 Y Value_Circle6	-61.6675	-61.7000	0.1500	-0.1500	0.0325
Y 50.Y Value_Circle3	-68.0621	-68.1000	0.1500	-0.1500	0.0379
Y 51.Y Value_Circle5	-26.3914	-26.4000	0.1000	-0.1000	0.0086
X 52.X Value_Circle6	-46.8375	-46.8000	0.1500	-0.1500	-0.0375
X 53.1 X Value_Circle5	-82.1201	-82.1000	0.1500	-0.1500	-0.0201
X 53.2 X Value_Circle7	-82.1058	-82.1000	0.1500	-0.1500	-0.0058
X 54.X Value_Circle4	-117.3937	-117.4000	0.1500	-0.1500	0.0063
X 55.X Value_Circle3	-156.8228	-156.8000	0.2000	-0.2000	-0.0228

2.5DOCK AUDIT CHECK SHEET

S. No	ACTIVITY	SPECIFIED	OBSERVATION			
			ОК	Value		
1	Documents	PDI report with latest drawing revision number	√			
2	Cleaning	Free from dust stains	√			
3	Oiling	All surfaces are covered, no excess oil				
4	Stretch film cover packing	All surfaces are covered with Stretch film	✓			
5	VCI bag condition	Free from damage, No oil seepage	✓			
6	No. Of parts in each bag/packing	Verify part Qty		3		
7	No. Of bags/packing	Verify no of bag /pack Qty		1		
8	Sealing of VCI bag with adhesive tape	Free from gaps	√			
9	Identification Tag	Verify the part no, Description, Qty	√			
10	Invoice	Verify the invoice as per PO	√			
11	Whom & When	Verified by & Date of verification		15-Feb		
Checked	Checked by : Thiru					

2.6 PRODUCT IMAGES

3 KEYLEARNINGS

Key Considerations for Machining Processes - OBC Housing

Pocket ID Depth Machining:

Machining the pocket ID depth is critical, requiring precise control. Tool selection plays a major role in achieving the correct depth while minimizing vibrations that could affect surface quality or tool life.

Vibration Issues: Vibrations during machining, especially at deeper depths, can negatively impact the precision of the pocket and the finish of the part. Proper tool selection and speed/feed adjustments are necessary to minimize this.

Clamping Method: The part must be properly clamped to avoid any movement during machining. If not properly clamped, vibrations from the tool can cause the part to shift, leading to inaccuracies in the depth and finish.

OD Draft Machining:

OD draft machining needs to be ensured for accuracy, with vibrations again posing a risk to the quality of the surface finish. A proper clamping method reduces the risk of displacement during the operation, which can help maintain a consistent angle and taper.

Clamping and Vibration: Inadequate clamping or improper vibration damping could lead to uneven tapering or tool deflection, affecting the overall geometry of the part.

Floor Radius R1:

Maintaining the floor radius (R1) is critical, as an improper radius can affect part performance. Vibrations can cause tool deflection, which will affect the radius and finish.

Tool Failure: Vibration can also accelerate tool wear or lead to tool failure. Effective clamping ensures that the part remains in place, reducing tool wear caused by unintended movement. Process Parameters for Tapping:

Tapping is crucial, and ensuring the correct length of the tap is essential for thread quality and part integrity. Vibrations during tapping can lead to broken taps or poor thread formation.

Vibration Control: Proper clamping during tapping is essential, as any part movement or vibration can lead to misalignment, resulting in incomplete or damaged threads.

Adjusting Parameters: Speed, feed, and cutting depth need to be adjusted based on both tool and part specifications to reduce vibration. This adjustment helps to ensure smooth and accurate tapping.

Clamping Method:

Proper Clamping: Proper clamping is fundamental to ensure the part stays in place during machining operations. Loose clamping can cause vibrations or even displace the part during the process, leading to inaccuracies and defects.

Clamping Considerations: The clamping system should be robust and secure enough to handle the forces generated during machining, especially in processes that involve deeper cuts or tapping.